

# GalAhead<sup>™</sup> Platform & Programs

**Dmitry Samarsky, PhD** 

Chief Technology Officer, Sirnaomics, Ltd.



### **Disclaimer**

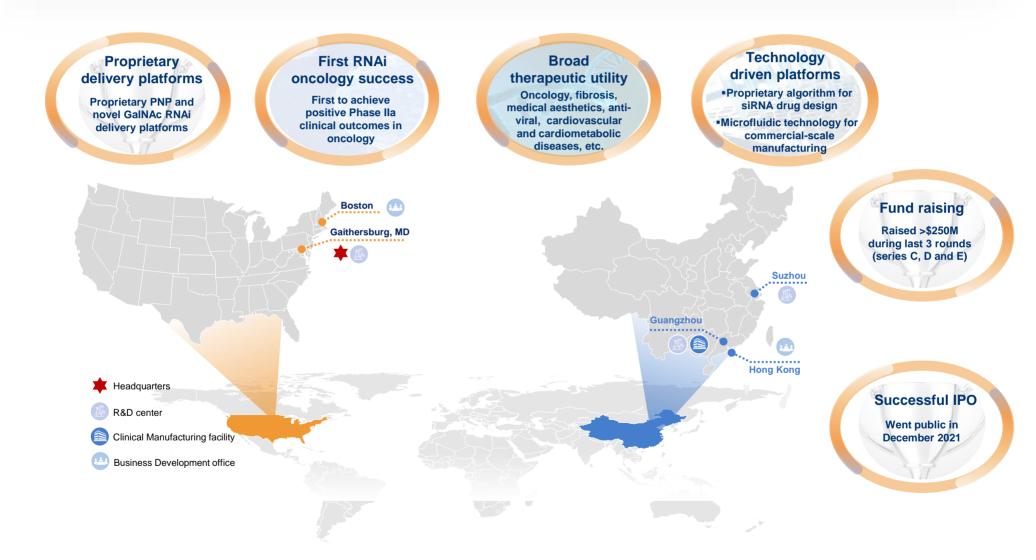
By attending the meeting where this presentation is made, or by reading the presentation materials, you agree to be bound by the following limitations: The information in this presentation has been prepared by representatives of Sirnaomics Ltd. (the "Company") for use in presentations by the Company at scientific conference and does not constitute a recommendation regarding the securities of the Company.

No representation or warranty, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information, or opinions contained herein. Neither the Company nor any of the Company's advisors or representatives shall have any responsibility or liability whatsoever (for negligence or otherwise) for any loss howsoever arising from any use of this presentation or its contents or otherwise arising in connection with this presentation. The information set out herein may be subject to updating, completion, revision, verification and amendment and such information may change materially.

This presentation is based on the economic, regulatory, market and other conditions as in effect on the date hereof. It should be understood that subsequent developments may affect the information contained in this presentation, which neither the Company nor its advisors or representatives are under an obligation to update, revise or affirm.

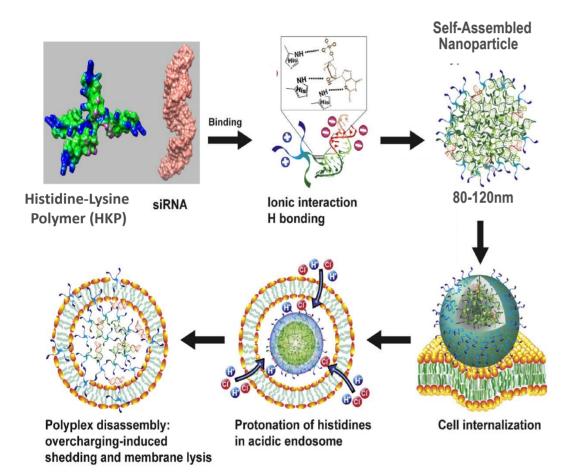
The information communicated in this presentation contains certain statements that are or may be forward looking. These statements typically contain words such as "will", "expects" and "anticipates" and words of similar import. By their nature forward looking statements involve risk and uncertainty because they relate to events and depend on circumstances that will occur in the future. Any investment in securities issued by the Company will also involve certain risks. There may be additional material risks that are currently not considered to be material or of which the Company and its advisors or representatives are unaware. Against the background of these uncertainties, readers should not rely on these forward-looking statements. The Company assumes no responsibility to update forward-looking statements or to adapt them to future events or developments.

The securities of the Company have not been and will not be registered under the U.S. Securities Act of 1933, as amended (the "Securities Act"), and may not be offered, sold or delivered within the United States or to U.S. persons absent registration under or an applicable exemption from the registration requirements of the Securities Act.


This presentation and the information contained herein do not constitute or form part of any offer for sale or issuance of or solicitation or invitation of any offer to buy or subscribe for any securities of the Company. This presentation and the information contained herein are strictly confidential, are being furnished to you solely for your information and may not be reproduced in any form or redistributed in any manner to any other person, in whole or in part. In particular, neither the information contained in this presentation nor any copy hereof may be, directly or indirectly, taken or transmitted into or distributed in the United States, Canada, Australia, Japan, Hong Kong or any other jurisdiction which prohibits the same except in compliance with applicable securities laws. Any failure to comply with this restriction may constitute a violation of U.S. or other national securities laws. No money, securities or other consideration is being solicited, and, if sent in response to this presentation or the information contained herein, will not be accepted.

No invitation is made by this presentation or the information contained herein to enter into, or offer to enter into, any agreement to purchase, acquire, dispose of, subscribe for or underwrite any securities or structured products, and no offer is made of any shares in or debentures of a company for purchase or subscription.

By reviewing this presentation, you are deemed to have represented and agreed that you and any customers you represent are either (a) a "qualified institutional buyer" (within the meaning of Rule 144A under the Securities Act), or (b) not a U.S. person (as defined in Regulation S under the Securities Act) and are outside of the United States and not acting for the account or benefit of a U.S. person (as defined in Regulation S under the Securities Act).




### **Sirnaomics: Introduction**





## Peptide Nano-Particle (PNP) Technology: principles



### **Polypeptide Nanoparticle (PNP) delivery**

- Biodegradable histidine-lysine branched polymer
- Envelops and protects siRNA to facilitate delivery into the targeted tissue and cell
- Histidine mediated protonation to facilitate siRNA payload release
- Nanoparticle size is controllable to diversify tissue distribution and enhance safety
- Addressing key cell types in liver beyond hepatocyte
- Multiple routes of administration: intradermal/tumoral, and systemic (systemic tox ongoing)



### Sirnaomics: PNP-based programs

|                    | Candidate | Gene Targets         | Indications                                                     | Delivery<br>Platform                  | Pre-clinical | IND<br>Enabling                                     | IND                     | Phase I     | Phase II                 | Phase III | Rights |
|--------------------|-----------|----------------------|-----------------------------------------------------------------|---------------------------------------|--------------|-----------------------------------------------------|-------------------------|-------------|--------------------------|-----------|--------|
|                    |           |                      | isSCC                                                           |                                       |              |                                                     |                         | China (N    | US<br>IRCT) <sup>2</sup> |           | Global |
|                    | STP705*   | TGF-β1/COX-2         | BCC                                                             | PNP-IT                                |              |                                                     |                         |             | US                       |           | Global |
|                    |           | 101-91/00/2          | Liver Cancer <sup>1</sup> (Basket) **                           |                                       |              | China (MRC                                          | <b>(T)</b> <sup>3</sup> | US          |                          |           | Global |
|                    |           |                      | Liver Cancer, combo with anti-PD-(L)15                          |                                       |              |                                                     |                         | US          |                          |           | Global |
| Oncology           | STP707    |                      | Multiple solid tumors                                           | <br>PNP-IV                            |              | China (MRC                                          | CT)⁴                    | US          |                          |           | Global |
|                    |           | TGF-β1/COX-2         | cSCC                                                            |                                       |              |                                                     |                         | US          |                          |           | Global |
|                    |           |                      | NSCLC                                                           |                                       |              |                                                     |                         | US          | <br> <br>                |           | Global |
|                    |           |                      | Liver Cancer, cSCC, NSCLC, combo with anti-PD-(L)1 <sup>5</sup> |                                       |              |                                                     |                         | US          |                          |           | Global |
|                    | STP355    | TGF-β1/VEGFR2        | Pan Cancer                                                      | PNP-IT / IV                           |              | US                                                  |                         |             |                          |           | Global |
|                    | STP369    | BCL-xL/MCL-1         | Head & Neck Cancer / Bladder Cancer                             | · · · · · · · · · · · · · · · · · · · |              | US                                                  |                         |             |                          |           | Global |
|                    |           |                      | Keloid Scarless Healing                                         |                                       |              | no ma (na co no |                         |             | US                       |           | Global |
|                    | STP705*   | STP705* TGF-β1/COX-2 |                                                                 | PNP-ID                                |              | US                                                  |                         |             |                          | 1         |        |
|                    | 011100    |                      | Hypertrophic Scarring                                           |                                       |              |                                                     |                         | China (MRCT | )                        |           | Global |
| Fibrosis           |           |                      |                                                                 |                                       |              |                                                     |                         | China       |                          |           |        |
|                    |           | TGF-β1/COX-2         | Liver Fibrosis (PSC)                                            |                                       |              |                                                     |                         | US          |                          |           | Global |
|                    | STP707    |                      |                                                                 | PNP-IV                                |              | China ( M                                           | RCT )                   |             |                          |           |        |
|                    |           |                      | Lung Fibrosis                                                   |                                       |              | US                                                  |                         |             |                          |           | Global |
| Medical Aesthetics | STP705*   | TGF-β1/COX-2         | Fat sculpting                                                   | PNP-ID                                |              |                                                     |                         | US          |                          |           | Global |

Notes : \* denotes our core product \*\* denotes orphan drug

1. Liver cancer (basket) includes cholangiocarcinoma, hepatocellular carcinoma, liver metastases etc.

2. We filed our IND in China in June 2021, which is currently awaiting approval from NMPA, for study sites in China. The study sites will be part of a global multicenter clinical trials for our Phase IIb clinical trial for isSCC.

3. We expect to file the IND in China as part of the global multicenter clinical trials.

4. We expect to file the IND solely for HCC in China as part of the global multicenter clinical trials.

5. Studies in combination with anti-PD-(L)1 inhibitors conducted pursuant to collaborations with Innovent and Shanghai Junshi.



### GalAhead<sup>™</sup>: Sirnaomics' proprietary GalNAc-siRNA platform



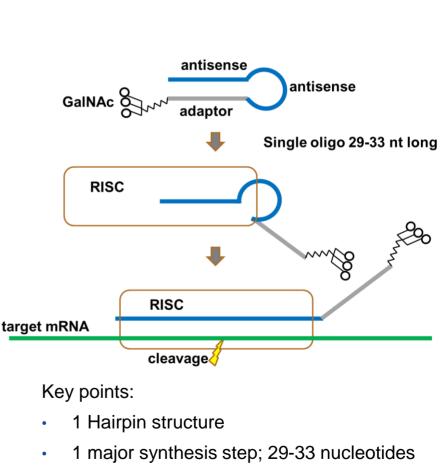
GalAhead<sup>™</sup> technology incorporates multiple components

mxRNA<sup>™</sup>: miniaturized single-targeting RNAi triggers

muRNA<sup>™</sup>: multi-unit multi-targeting RNAi triggers

Note: pronounced as in Sir **Galahad**, a knight of the King Arthur's Round Table and one of only three achievers of the Holy Grail



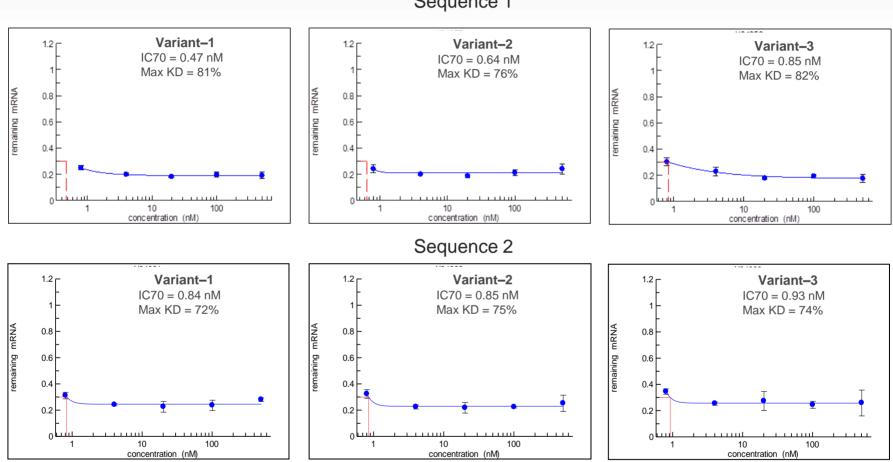

### mxRNAs<sup>™</sup>: Proposed mechanism of action (MOA)

# antisense (guide) strand GalNAc Sense (passenger) strand RISC (Ago2) degradation RISC target mRNA cleavage

**Conventional GalNAc-siRNA** 

### Key points:

- Two single strands
- 3 major synthesis steps; 56+ nucleotides
- High risk of off-target effects loose degradation siRNA fragment




Sirnaomics mxRNA

• Less risk of off-target effects



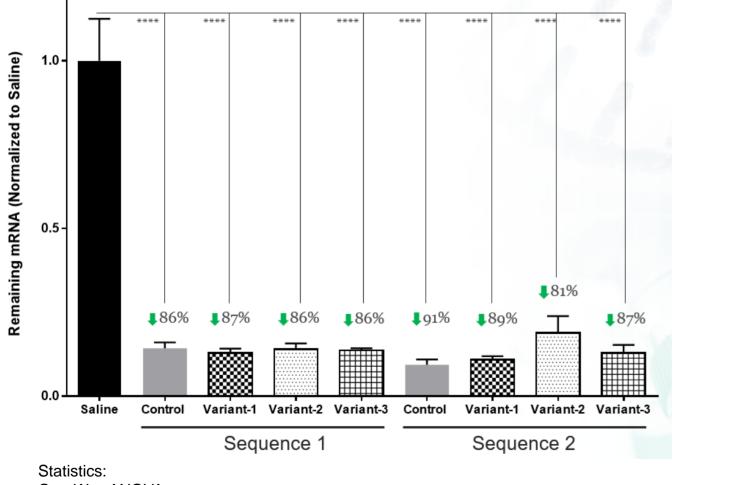
### mxRNA<sup>™</sup>: Remarkable activity in primary hepatocytes



Sequence 1

Cells: primary mouse hepatocytes

Delivery: passive uptake


Concentrations: 500, 100, 20, 4.0, 0.8 nM

Time-point: 72 hours

Readout: TMPRSS6 mRNA



## mxRNA<sup>™</sup>: Outstanding in vivo activity (single dose)



**Study Design** 

Animals:

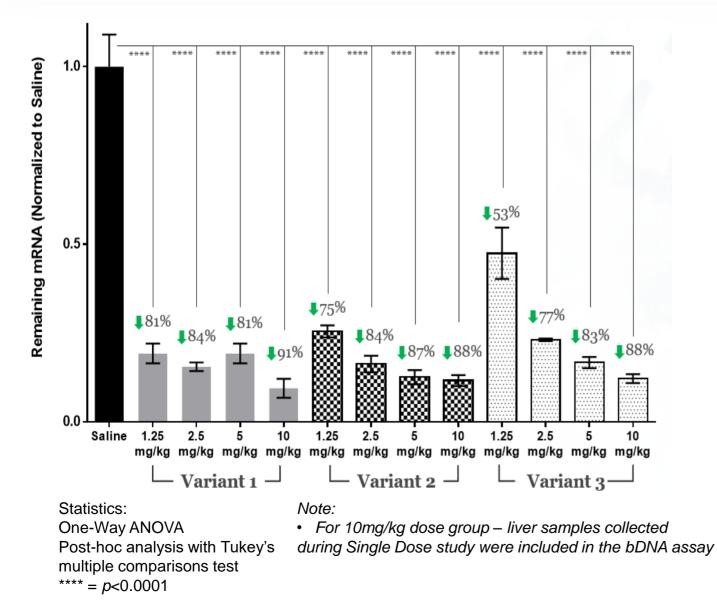
mice

#### Dose:

• 10 mg/kg

#### **Timepoint:**

• 5 days


#### Readout:

TMPRSS6 mRNA

**One-Way ANOVA** Post-hoc analysis with Tukey's multiple comparisons test \*\*\*\* = *p*<0.0001



## mxRNA<sup>™</sup>: Outstanding in vivo activity (dose response)



#### **Study Design**

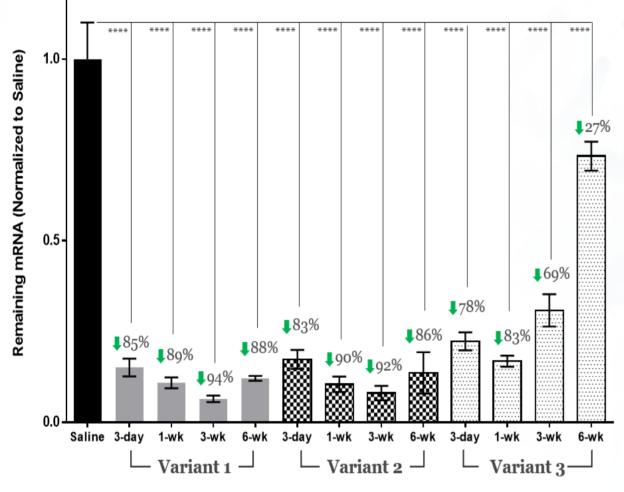
• 1, 2 & 3 configuration for

sequence 1

#### Doses:

- 1.25 mg/kg
- 2.5 mg/kg
- 5 mg/kg
- 10 mg/kg

N= 4 C57/BI6 mice/group


#### **Timepoints:**

- 5 day timepoint
- bDNA analysis: TMPRSS6 mRNA

from liver tissues



## mxRNA<sup>™</sup>: Outstanding in vivo activity (duration response)



### **Study Design**

 1, 2 & 3 configuration for sequence 1

#### Dose:

• 3mg/kg

N= 4 C57/BI6 mice/group

#### **Timepoints:**

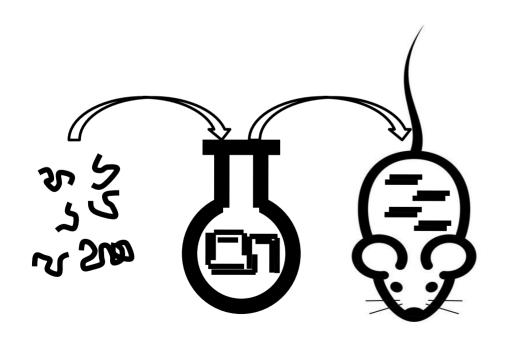
- 3-day, 1-week, 3-week, 6-week
- bDNA analysis: TMPRSS6 mRNA from liver tissues

Statistics: One-Way ANOVA Post-hoc analysis with Tukey's multiple comparisons test \*\*\*\* = p < 0.0001



## mxRNA<sup>™</sup>: Summary

- Outstanding activity
- Relative ease of CMC
- Solid IP position (protection and FTO)

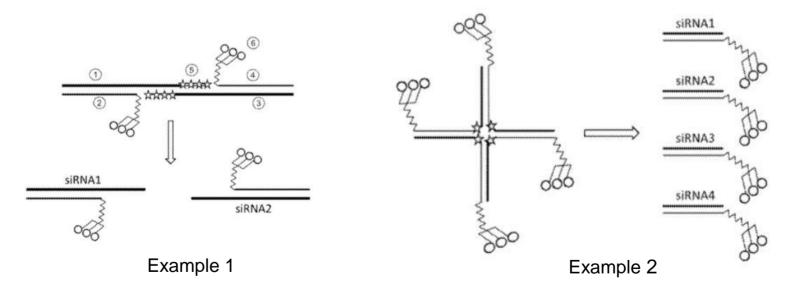



### muRNA<sup>™</sup>: Concept & principles

The muRNA technology uses the principle described by the German engineering term "SollBruchStelle" (SBS), meaning the "spot aimed to be broken". The muRNAs are assembled *in vitro* using Watson-Crick interaction between comprising oligonucleotide building blocks, but fall apart *in vivo* upon exposure to the extra- and/or intra-cellular biological fluids along the pre-designed SBS moieties to produce multiple potent RNAi triggers

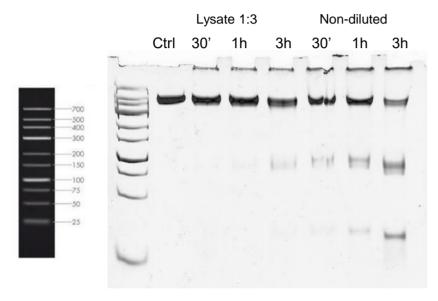
### "Sollbruchstelle" (SBS) examples

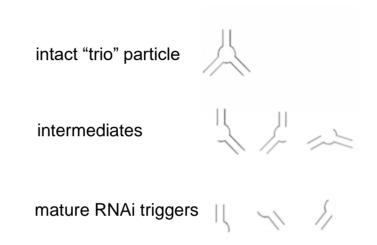










### muRNA<sup>™</sup>: Multi-targeting multi-unit RNAi triggers

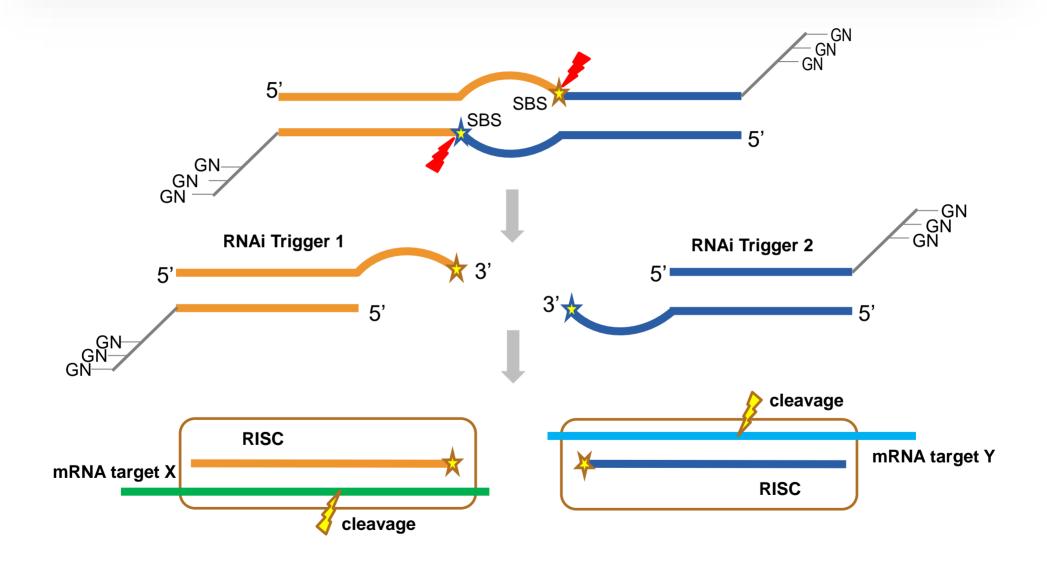

- Unconventional concept of multi-targeting single-molecule drug, enhanced with "sollbruchstelle" (SBS; the German engineering term meaning "spot-aimed-to-be-broken") component
- Single oligo of ~32 nt per target; *e.g.*, four ~32-mers assembled in one molecule to target four different targets
- Solid IP position: <u>PCT/IB2019/058221</u> (Sep 2019; priority Sep 2018)





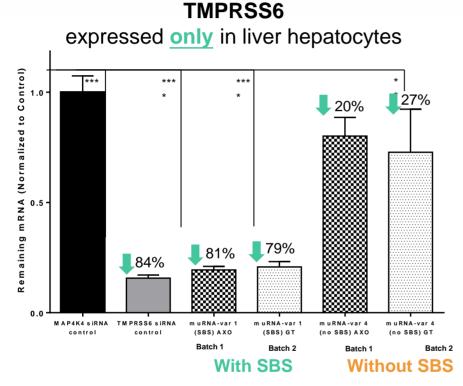
## muRNA<sup>™</sup>: Tripartite muRNA disassembly in biological fluids

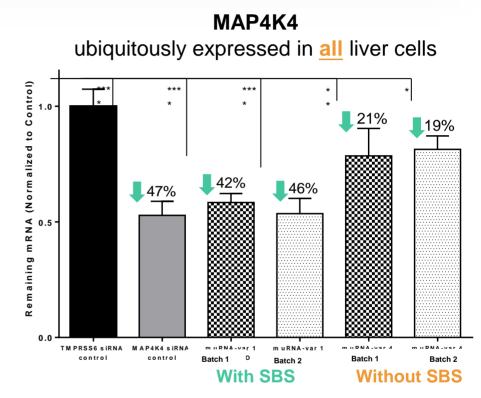





muRNAs: composed of 3 building blocks ("Trio") Incubation: in diluted (1:3) or non-diluted liver lysosomal extract for 0.5, 1.0 or 3.0 hours Gel: 20% non-denaturing PAAG, 1xTBE Size marker: DNA ladder VWR #732-3300 Stain: GelRed®, Biotium

Note: disassembly of the Trio occurs not into the original building blocks, but into the new structures





## muRNA<sup>™</sup>: Double targeting





## muRNA<sup>™</sup>: In vivo activity





#### Dose:

• 10 mg/kg

#### **Timepoint:**

• 5 days

Statistics: One-Way ANOVA Post-hoc analysis with Tukey's multiple comparisons test \*\*\*\* = p<0.0001



## muRNA<sup>™</sup>: Summary

- High activity
- Ability to knockdown 2+ targets with one molecule
- Relative ease of CMC
- Solid IP position (protection and FTO)

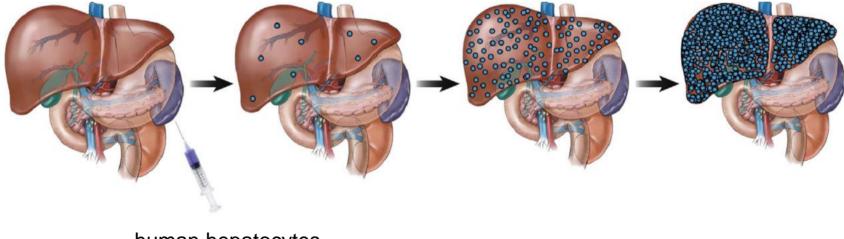


## GalAhead<sup>™</sup> therapeutic pipeline: June 2022

| Drug    | Target                  | Indication                                | Bioinformatics | Discovery | Candidate<br>Nomination | IND<br>Enabling | IND |
|---------|-------------------------|-------------------------------------------|----------------|-----------|-------------------------|-----------------|-----|
| STP122G | Factor XI               | Anticoagulation/Thrombosis                |                |           |                         |                 |     |
| STP125G | АроСЗ                   | Hypertriglyceridemia                      |                |           |                         |                 |     |
| STP144G | Complement<br>Factor B  | Complement-mediated diseases              |                |           |                         |                 |     |
| STP145G | Complement<br>Factor C5 | Complement-mediated diseases              |                |           |                         |                 |     |
| STP151G | TMPRSS6/ApoC3           | Hemochromatosis with hypertriglyceridemia |                |           |                         |                 |     |
| STP146G | Non-disclosed           | Complement-mediated diseases              |                |           |                         |                 |     |
| STP133G | Non-disclosed           | Cardiometabolic diseases                  |                |           |                         |                 |     |
| STP138G | Non-disclosed           | Hypercholesterolemia                      |                |           |                         |                 |     |

### We are planning to file our first GalAhead IND later this year, followed by several more in 2023



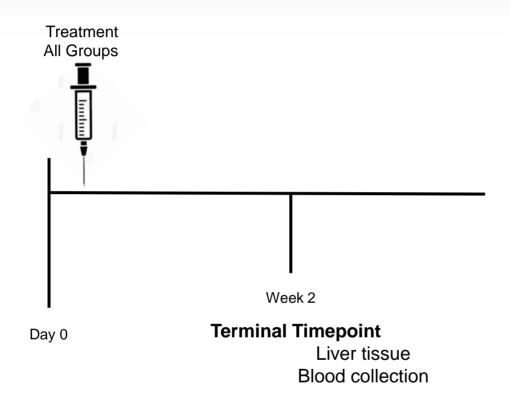

# STP125G (ApoC3)



## **STP125G: Humanized liver mouse model**

20% mouse 80% human

mouse liver




human hepatocytes

From M. Grompe and S. Strom (2013) Gastroenterology, 145:1209–1214



## STP125G: Humanized liver mice Dose study design





**Study Design** 

#### **Animal Model:**

Humanized liver mouse model

#### Test compounds:

• STP125G - A28(14-4)mF mxRNA

#### Dosing:

- 10 mg/kg
- 30 mg/kg

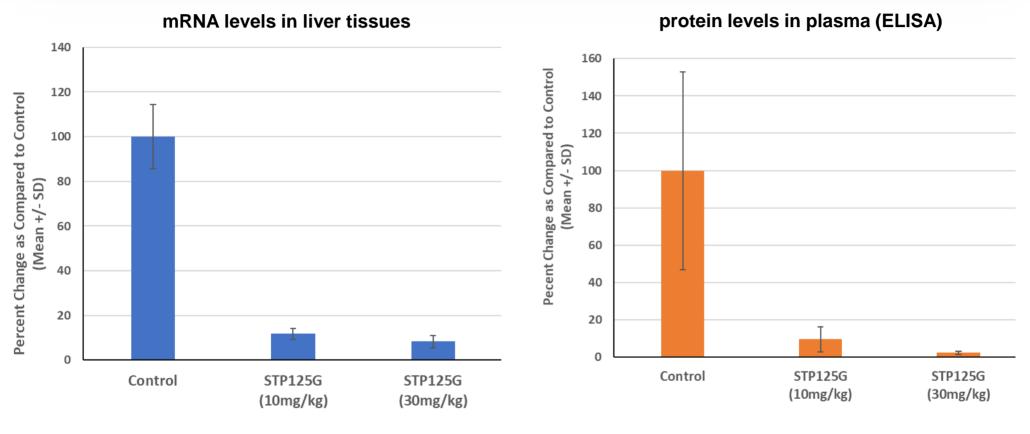
#### ROA:

Subcutaneous

#### N:

• 4 mice/group

#### **Terminal Endpoints:**


• 2 weeks

#### **Readouts:**

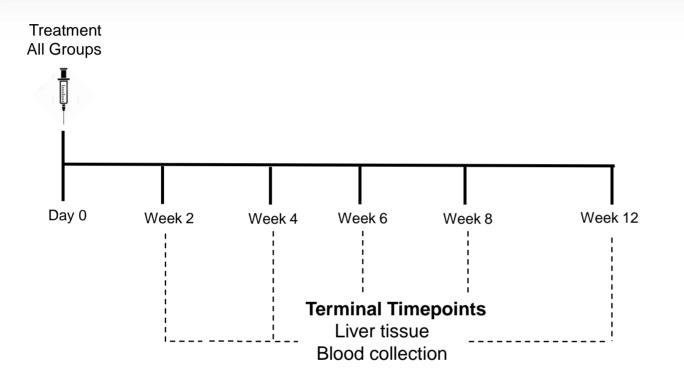
- qPCR (mRNA)
- ELISA (protein)
- Triglycerides



### STP125G: Target knock-down (2 weeks)



Dose Response:


- 10mg/kg: 88% suppression
- 30mg/kg: 92% suppression

Dose Response:

- 10mg/kg: 91% reduction
- 30mg/kg: 98% reduction



## STP125G: Humanized liver mice Duration study design





**Study Design** 

#### Animal Model:

Humanized liver mouse model

#### Test compounds:

• STP125G - A28(14-4)mF mxRNA

#### Dosing:

• 10 mg/kg

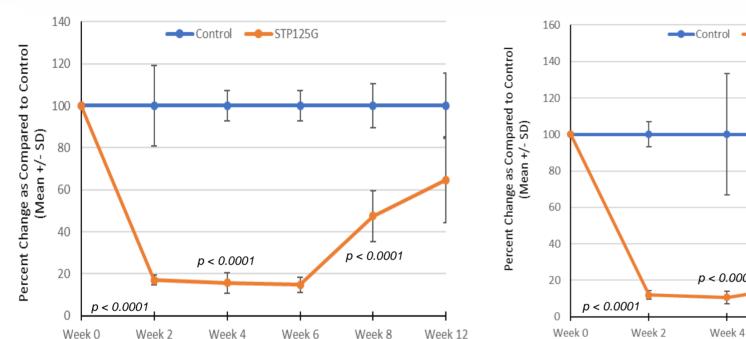
#### ROA:

Subcutaneous

#### N:

• 4 mice/group

#### **Terminal Endpoints:**


• 2, 4, 6, 8 and 10-weeks

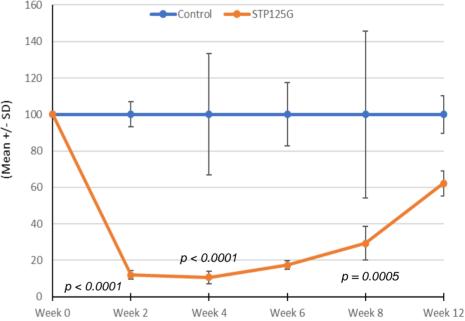
#### **Readouts:**

- qPCR (mRNA)
- ELISA (protein)
- Triglycerides



## STP125G: APOC3 knockdown (Duration Response)




### mRNA levels in liver tissues

### **Duration Response:**

- 83-85% KD between weeks 2-6
- 48% return on baseline at week 8
- 35% KD at week 12

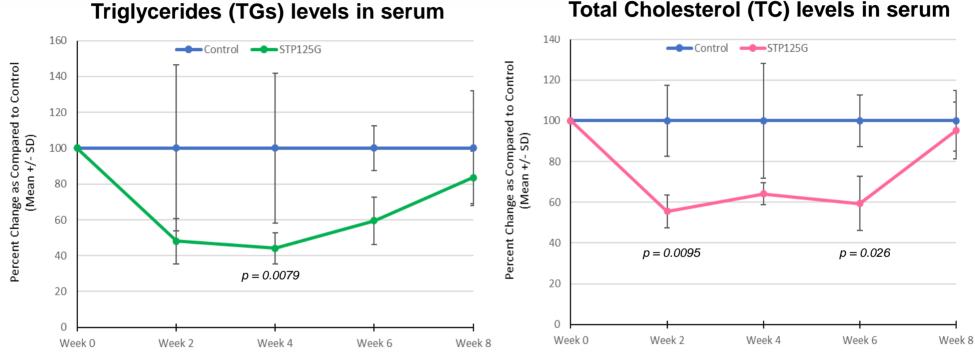
#### Note:

- 1. Outliers were removed from the mean (mice 17, 14 (4W) + 39 (8W) + 18 (12W))
- 2. Note: N=2 mice for week 6 (control & STP12G) and week 12 (control) timepoints



protein levels in plasma (ELISA)

### **Duration Response:**


- 82-89% reduction between weeks 2-6
- 30% return on baseline at week 8
- 37% reduction at week 12

#### Note:

- 1. Outlier was removed from the mean (mouse 39 (8W))
- 2. Note: N=2 mice for week 6 (control & STP12G) and week 12 (control) timepoints



### **STP125G: Reduction in TGs and TC (Duration Response)**



### **Total Cholesterol (TC) levels in serum**

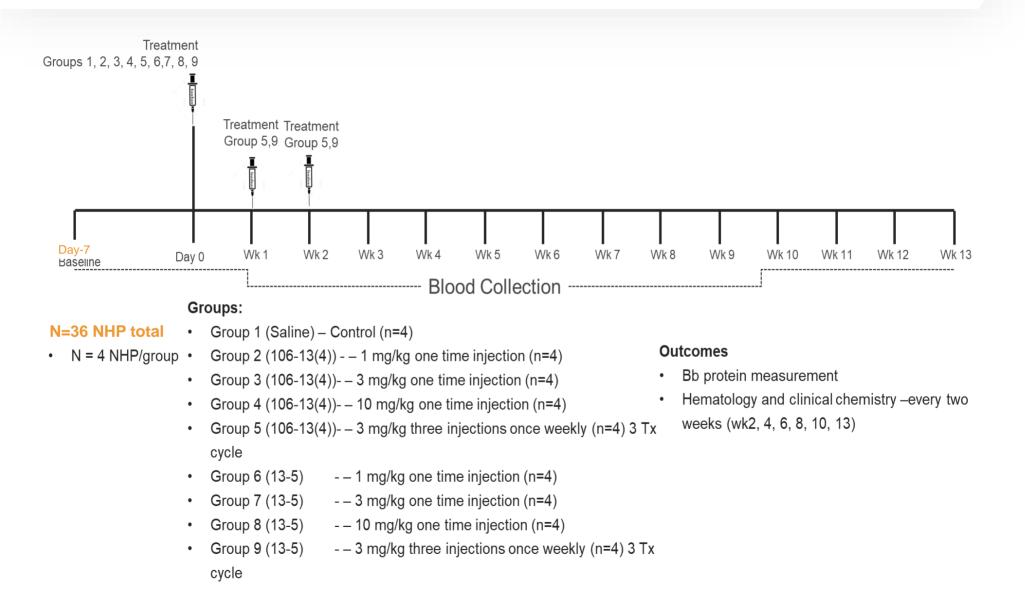
**Duration Response:** 

- 50% reductions observed at weeks 2-4 •
- Return to control levels by week 8 •

Note: N=2 mice for week 6 timepoint

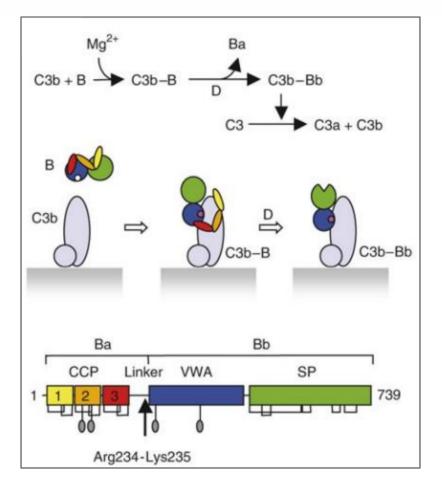
**Duration Response:** 

- 40% reductions observed at weeks 2-6
- Return to control levels by week 8


Note: N=2 mice for week 6 timepoint



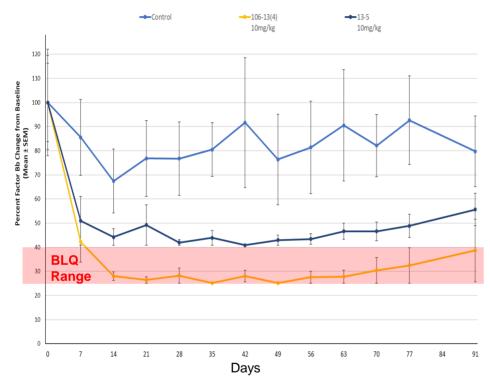
## **STP144G (Complement Factor B)**




## STP144G: Non-human primates (NHP) study design



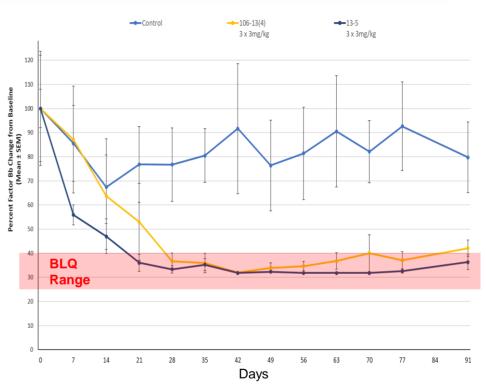



## STP144G: Bb assay background



From Midler FJ et al (2007) Nat Struct & Mol Biol (14) 224-8




### STP144G: Bb levels with lead compounds in NHP



### Single Treatment Comparison

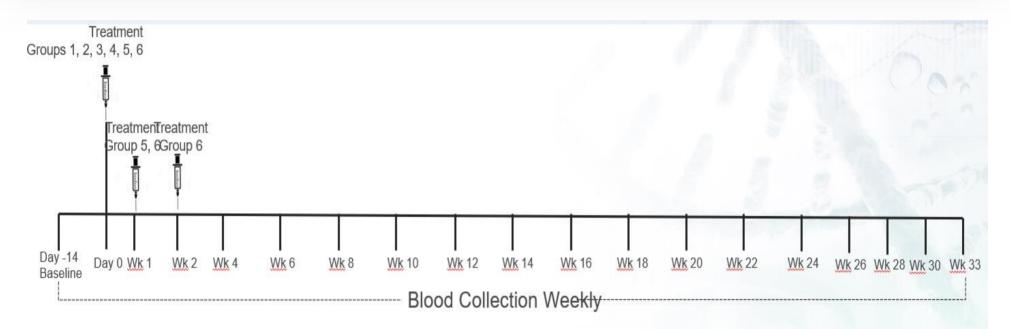
Max reduction of Factor Bb and duration of response

- 106-13(4)
  - Max suppression of 74% at week 5
  - >60% reduction from week 2 to week 13
  - Mean BLQ from week 2 to week 10
- 13-5
  - Max suppression of 59% at week 6
  - >50% reduction from week 2 to week 13
  - No Mean BLQ for any of the timepoints



Multiple Treatment Comparison

Max reduction of Factor Bb and duration of response


- 106-13(4)
  - Max suppression of 68% at week 6
  - >50% reduction from week 4 to week 13
  - Mean BLQ at week 6
- 13-5
  - Max suppression of 68% at week 6
  - >50% reduction from week 2 to week 13
  - Mean BLQ from week 6 to week 11



## **STP122G (Coagulation Factor XI)**

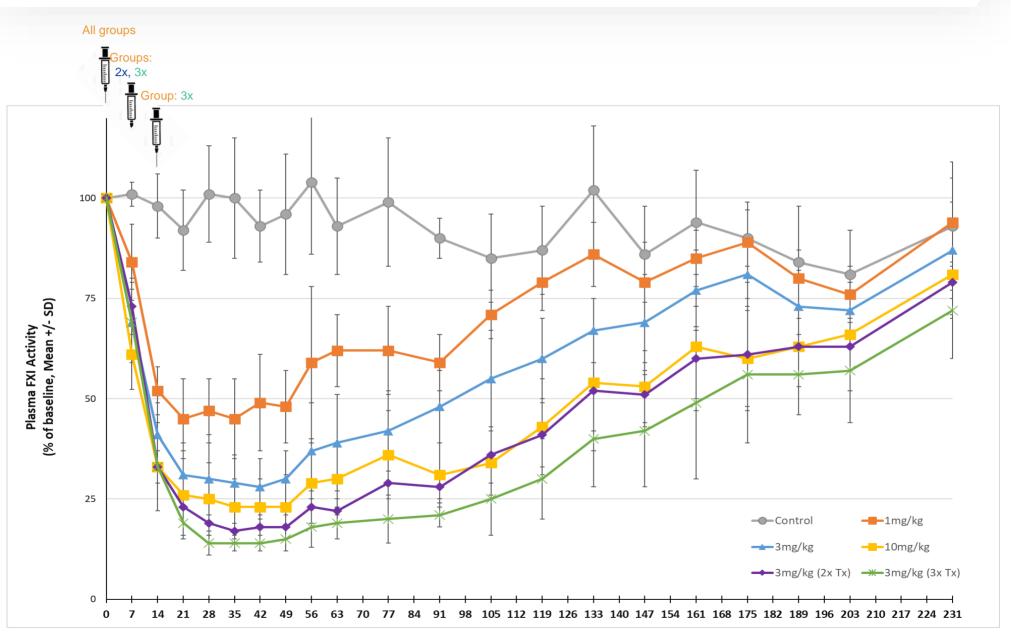


## STP122G: Non-human primates (NHP) study design



### N = 24 NHP total

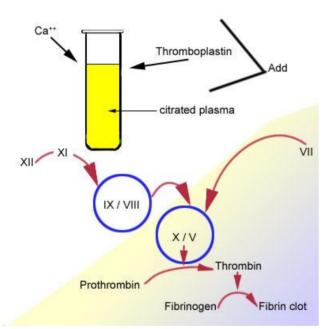
### Groups:


- N = 4 NHP/group
  - Group 1 (Saline) Control (n=4)
  - Group 2 (91-conv-31)- 1mg/kg one time injection (n=4)
  - Group 3 (91-conv-31)- 3 mg/kg one time injection (n=4)
  - Group 4 (91-conv-31)- 10 mg/kg one time injection (n=4)
  - Group 5 (91-conv-31)- 3 mg/kg weekly for two weeks (n=4) 2 Tx cycle
  - Group 6 (91-conv-31)- 3 mg/kg weekly for three weeks (n=4) 3 Tx cycle

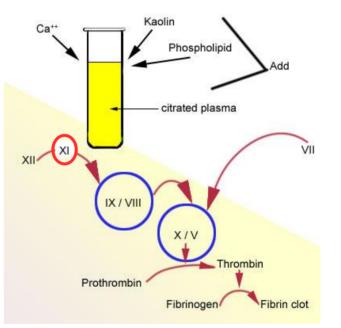
#### Outcomes

- Primary endpoint: Factor XI plasma activity
- APTT (activated partial thromboplastin time), PT (prothrombin time)
- Hematology and clinical chemistry: baseline, Wk2, Wk6, Wk18




## STP122G (NHP): Primary activity readout (up to week 33)






## STP122G: Secondary activity readout and pathway specificity

Extrinsic Pathway: Prothrombin time test (PT)



The prothrombin test specifically evaluates the activity of factors VII, V, and X, prothrombin, and fibrinogen Intrinsic Pathway: Activated Partial Thromboplastin Time test (APTT)



APTT measures the integrity of the intrinsic system (Factors XII, XI, VIII, IX) and common clotting pathways

From https://www.medicine.mcgill.ca/physio/vlab/bloodlab/pt\_ptt.htm



## STP122G: Secondary activity readout and pathway specificity

APTT PT 20 -Control -Control ---1 mg/kg ----1 mg/kg 📥 3 mg/kg Activated Partial Thromboplastin Time (Seconds; Mean ± SD) 15 Prothrombin (PT) (Seconds; Mean ± SD) lime 196 203 210 217 224 231 0 7 14 21 28 35 42 49 0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140 147 154 161 168 175 182 189 196 203 210 217 224 231 Dav Days

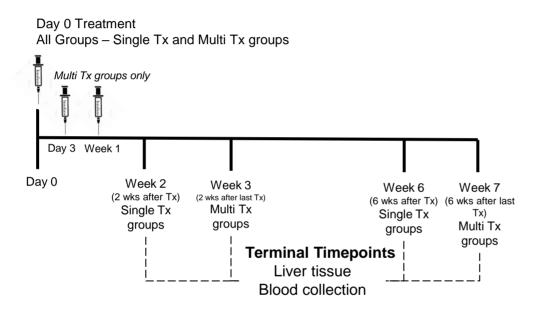
- Reductions in plasma FXI activity correlated well with elevation of APTT
- Dose dependent elevation of APTT

· No effect on PT values



## **STP122G (NHP): Safety readouts**

|                        | Baseline (pre-<br>treatment) |                              |                                 | Week 2 (2 weeks post-treatment) |                              |                                 | Week 6                |               | Week 18                         |                       |                              | We                                | ek 26                 |                              | Week<br>33                      |                       |               |                                 |
|------------------------|------------------------------|------------------------------|---------------------------------|---------------------------------|------------------------------|---------------------------------|-----------------------|---------------|---------------------------------|-----------------------|------------------------------|-----------------------------------|-----------------------|------------------------------|---------------------------------|-----------------------|---------------|---------------------------------|
|                        | Control<br>(Mean<br>±SD)     | 10mg/k<br>g<br>(Mean<br>±SD) | 3mg/kg<br>(3x)<br>(Mean<br>±SD) | Control<br>(Mean<br>±SD)        | 10mg/k<br>g<br>(Mean<br>±SD) | 3mg/kg<br>(3x)<br>(Mean<br>±SD) | Control<br>(Mean ±SD) | g             | 3mg/kg<br>(3x)<br>(Mean<br>±SD) | Control<br>(Mean ±SD) | 10mg/k<br>g<br>(Mean<br>±SD) | x 3mg/kg<br>(3x)<br>(Mean<br>±SD) | Control<br>(Mean ±SD) | 10mg/k<br>g<br>(Mean<br>±SD) | 3mg/kg<br>(3x)<br>(Mean<br>±SD) | Control<br>(Mean ±SD) | g             | 3mg/kg<br>(3x)<br>(Mean<br>±SD) |
| ALT (U/L)              | 47 ±<br>11                   | 50 ± 19                      | 66 ±<br>17                      | 34 ± 6                          | 44 ±<br>16                   | 60 ± 8                          | 37 ± 13               | 42 ±<br>16    | 53 ±<br>15                      | 43 ± 19               | 43 ±<br>16                   | 50 ±<br>20                        | 46 ± 18               | 54 ±<br>22                   | 65 ±<br>12                      | 48 ± 28               | 44 ±<br>14    | 58 ±<br>10                      |
| AST (U/L)              | 47 ± 9                       | 46 ± 6                       | 66 ± 9                          | 51 ± 12                         | 48 ±<br>19                   | 54 ±<br>10                      | 49 ± 5                | 44 ± 3        | 54 ±<br>14                      | 51 ± 5                | 59 ±<br>30                   | 63 ± 9                            | 50 ± 8                | 59 ±<br>25                   | 67 ±<br>24                      | 39 ± 6                | 39 ± 9        | 64 ±<br>14                      |
| ALP (U/L)              | 496 ±<br>150                 | 603 ±<br>119                 | 475 ±<br>111                    | 526 ± 135                       | 588 ±<br>74                  | 473 ±<br>166                    | 584 ± 151             | 627 ±<br>131  | 487 ±<br>166                    | 581 ± 131             | 545 ±<br>45                  | 591 ±<br>224                      | 616 ± 140             | 623 ±<br>84                  | 618 ±<br>170                    | 616 ± 140             | 623 ±<br>84   | 618 ±<br>170                    |
| TBIL<br>(umol/L)       | 3.6 ±<br>2.1                 | 3.8 ±<br>1.3                 | 4.2 ±<br>0.9                    | 3.3 ± 0.4                       | 3.6 ± 1                      | 3.2 ± 1                         | 3.3 ± 1.2             | 4.0 ±<br>1.6  | 3.8 ±<br>1.2                    | 3.4 ± 1.2             | 3.4 ±<br>0.6                 | 3.5 ± 2                           | 4.3 ± 1.8             | 4.0 ±<br>0.8                 | 4.2 ±<br>1.4                    | 3.4 ± 1.5             | 4.2 ±<br>1.2  | 4.0 ±<br>1.1                    |
| Total<br>Protein (g/L  | <b>7</b> 4 ± 4               | 73 ± 4                       | 76 ± 2                          | 72 ± 2                          | 72 ± 4                       | 73 ± 3                          | 76 ± 5                | 74 ± 1        | 75 ± 2                          | 73 ± 4                | 71 ± 2                       | 72 ± 3                            | 75 ± 3                | 74 ± 2                       | 76 ± 3                          | 74 ± 4                | 74 ± 1        | 73 ± 2                          |
| Platelets<br>(10x3/uL) | 399 ±<br>146                 | 374 ±<br>93                  | 430 ±<br>66                     | 393 ± 113                       | 381 ±<br>97                  | 490 ±<br>58                     | 363 ± 79              | 380 ±<br>69   | 462 ±<br>100                    | 376 ± 101             | 343 ±<br>79                  | 450 ±<br>99                       | 387 ± 126             | 357 ±<br>74                  | 450 ±<br>120                    | 373 ± 102             | 375 ±<br>90   | 466 ±<br>88                     |
| RBCs<br>(10x6/uL)      | 5.6 ±<br>0.3                 | 5.9 ±<br>0.3                 | 5.7 ±<br>0.1                    | 5.2 ± 0.4                       | 5.5 ±<br>0.1                 | 5.3 ±<br>0.4                    | 5.4 ± 0.3             | 5.7 ±<br>0.3  | 5.3 ±<br>0.4                    | 5.4 ± 0.3             | 5.6 ±<br>0.2                 | 5.4 ±<br>0.1                      | 5.5 ± 0.6             | 6.0 ±<br>0.2                 | 5.9 ±<br>0.4                    | 5.8 ± 0.3             | 6.0 ±<br>0.2  | 5.9 ±<br>0.3                    |
| WBC<br>(10X3/uL)       | 14.5 ±<br>3.8                | 11.9 ±<br>6.3                | 11.1 ±<br>4.3                   | 13.3 ± 2.2                      | 11.4 ±<br>3.3                | 10 ±<br>4.6                     | 12.9 ± 1.9            | 11.3 ±<br>3.6 | 12.8 ±<br>4.8                   | 10.8 ± 2.8            | 9.4 ±<br>4.2                 | 11.5 ±<br>3.5                     | 12.1 ± 2.5            | 9.4 ±<br>4.2                 | 12.0 ±<br>2.9                   | 11.3 ± 6.5            | 10.7 ±<br>3.9 | 9.7 ±<br>3.9                    |
| LDH                    | 702 ±<br>201                 | 856 ±<br>436                 | 1156 ±<br>462                   | 1128 ± 466                      | 458                          | 527                             | 811 ± 172             | 314           | 996 ±<br>242                    | 1045 ± 436            | 1178 ±<br>545                | 1607 ±<br>479                     | 1044 ± 419            | 1205 ±<br>567                | 1544 ±<br>480                   | 560 ± 147             | 641 ±<br>361  | 911 ±<br>152                    |
| GLDH                   | 21 ± 5                       | 29 ± 18                      | 36 ± 2                          | 23 ± 2                          | 25 ±<br>14                   | 28 ±<br>11                      | 25 ± 5                | 24 ±<br>14    | 28 ±<br>10                      | 23 ± 1                | 21 ± 7                       | 31 ± 9                            | 24 ± 8                | 21 ±<br>10                   | 37 ± 3                          | 28 ± 6                | 25 ±<br>12    | 34 ± 5                          |


- Selected representative readouts for high dose groups
- No elevations of liver function enzymes post-treatments
- No changes in hematology parameters post-treatments



# STP151G (TMPRSS6/ApoC3)



### **APOC3-TMPRSS6: Humanized liver mice study design**





**Study Design** 

#### Animal Model:

- · Humanized liver mouse model
- WT Normal C57/BI6 mice

#### Test compounds:

• muRNA (APOC3-TMPRSS6)

#### Dosing:

- Single Tx: 10mg/kg, 25mg/kg, 50mg/kg
- Multi Tx (3x): 25mg/kg

#### ROA:

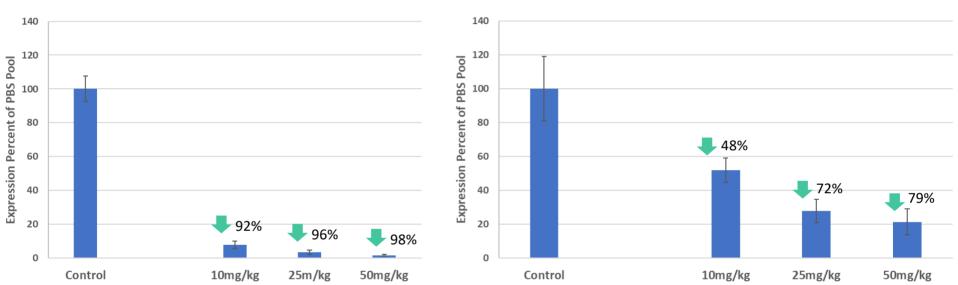
Subcutaneous

#### N:

• 4 mice/group

#### **Terminal Endpoints:**

- 2 weeks, 3 weeks
- 6 weeks, 7 weeks


#### **Readouts:**

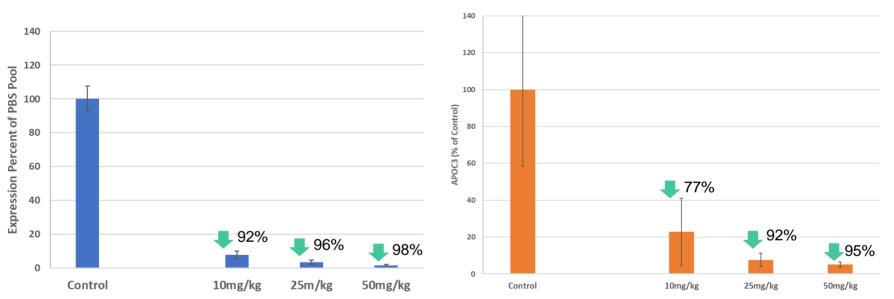
- qPCR (mRNA) APOC3, TMPRSS6
- ELISA (protein) APOC3



**TMPRSS6:** mRNA in Liver Tissues

### **Single Treatment: Week 2**




### APOC3: mRNA in Liver Tissues

Successful knockdown of TWO hepatocyte-specific targets

- APOC3 resulted in >90% KD at 25mg/kg
- TMPRSS6 resulted in >70% KD at 25mg/kg

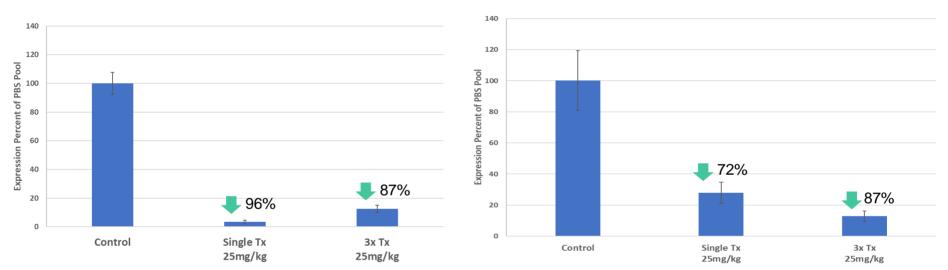


### **Correlation: mRNA – Protein (Single treatment)**



### APOC3: mRNA in Liver Tissues

APOC3: Protein in Plasma


 $\int_{a} \frac{1}{a} \frac{1}{a}$  High Correlation between mRNA and Protein

KD of mRNA expression was correlated with lowering of protein levels in the plasma



**TMPRSS6:** mRNA in Liver Tissues

## Single vs Multi Treatments (week 2 after last dose)



### **APOC3:** mRNA in Liver Tissues

#### Comparable KD between single and multiple treatments •

**High Potency** 

Successful KD of two hepatocyte-specific targets with both single and multiple treatments



### GalAhead<sup>™</sup>: Sirnaomics' proprietary GalNAc-siRNA platform



GalAhead<sup>™</sup> technology incorporates multiple components

mxRNA<sup>™</sup>: miniaturized single-targeting RNAi triggers

muRNA<sup>™</sup>: multi-unit multi-targeting RNAi triggers

Note: pronounced as in Sir **Galahad**, a knight of the King Arthur's Round Table and one of only three achievers of the Holy Grail



## GalAhead<sup>™</sup> therapeutic pipeline: June 2022

| Drug    | Target                  | Indication                                | Bioinformatics | Discovery | Candidate<br>Nomination | IND<br>Enabling | IND |
|---------|-------------------------|-------------------------------------------|----------------|-----------|-------------------------|-----------------|-----|
| STP122G | Factor XI               | Anticoagulation/Thrombosis                |                |           |                         |                 |     |
| STP125G | АроС3                   | Hypertriglyceridemia                      |                |           |                         |                 |     |
| STP144G | Complement<br>Factor B  | Complement-mediated diseases              |                |           |                         |                 |     |
| STP145G | Complement<br>Factor C5 | Complement-mediated diseases              |                |           |                         |                 |     |
| STP151G | TMPRSS6/ApoC3           | Hemochromatosis with hypertriglyceridemia |                |           |                         |                 |     |
| STP146G | Non-disclosed           | Complement-mediated diseases              |                |           |                         |                 |     |
| STP133G | Non-disclosed           | Cardiometabolic diseases                  |                |           |                         |                 |     |
| STP138G | Non-disclosed           | Hypercholesterolemia                      |                |           |                         |                 |     |

### We are planning to file our first GalAhead IND later this year, followed by several more in 2023



# **Questions?**

### DmitrySamarsky@sirnaomics.com